

Quick Response Code:

Website: https://wgges.us

Creative Commons (CC BY-NC-SA

4.0):

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations ae licensed under the identical terms

Manuscript ID: IJWGAFES-2025-020502

DOI: 10.5281/zenodo.16562883

DOI Link:

https://doi.org/10.5281/zenodo.16562883

Volume: 2

Issue: 5

Month: May

Year: 2025

E-ISSN: 3066-1552

Submitted: 06 Apr 2025

Revised: 15 Apr 2025

Accepted: 05 May 2025

Published: 31 May 2025

PSGVPMS ASC College Shahada, Dist. Nandurbar Email: patilrah30@gmail.com

Address for correspondence: Dr. Rahul V. Patil PSGVPMS ASC College Shahada, Dist. Nandurbar

Email: patilrah30@gmail.com

How to cite this article:

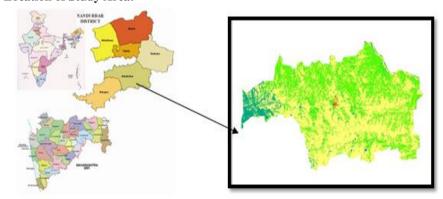
Patil, R. V. (2025). Study of Land Cover types in Nandurbar Tehsil. International Journal of World Geology, Geography, Agriculture, Forestry and Environment Sciences, 2(5), 5–7.

https://doi.org/10.5281/zenodo.16562883

Study of Land Cover types in Nandurbar Tehsil

Dr. Rahul V. Patil

Abstract

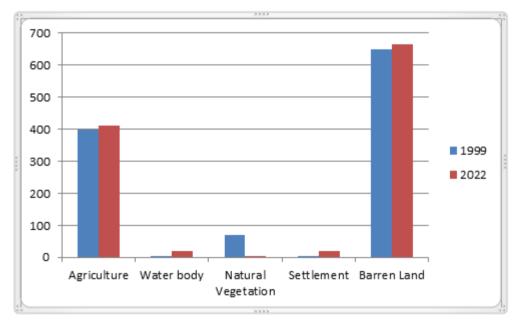

Understanding the land cover pattern is not merely an academic exercise; it forms the bedrock for discerning the inherent utility of specific land parcels and, perhaps more crucially, for tracing the evolutionary trajectory of a landscape over time. Indeed, this analytical lens offers profound insights into the intricate interplay between pervasive human activities and the persistent forces of natural processes, revealing how they collectively sculpt and redefine our terrestrial environment. This prolonged scrutiny is not arbitrary; it is designed to systematically assess the dramatic transformations that have reshaped the land, driven by a confluence of influential factors. These include the unrelenting push of agricultural expansion to feed growing populations, the inexorable creep of urban development as community's density, the widespread repercussions of deforestation on local ecosystems, and a spectrum of other evolving land use practices that leave an unmistakable imprint. By undertaking a rigorous comparative analysis of high-resolution satellite data harvested from both the initial year of 1999 and the conclusive year of 2022, the study aims to illuminate the most pronounced shifts in land utilization. More than just identifying these changes, it seeks to articulate their potential environmental impacts, ranging from alterations in hydrological cycles and soil degradation to biodiversity loss and the disruption of vital ecological services, thereby painting a comprehensive picture of the region's evolving environmental health.

Keywords: land cover, agriculture, population, satellite data, urban, transformation

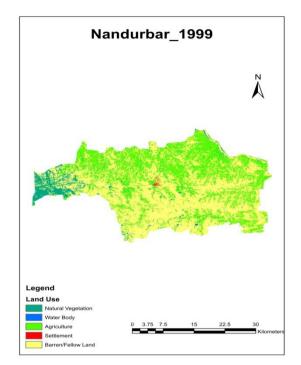
Introduction

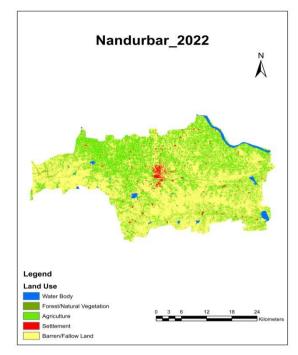
In the given research, the researcher has studied various land cover types in Nandurbar tehsil to understand the spatial distribution and changes in land use over time. Advanced techniques such as Remote Sensing (RS) and Geographic Information System (GIS) were employed to accurately identify and map different land use categories, including water bodies, vegetation, agricultural land, barren land, and settlements. The analysis revealed that there have been drastic changes in these land cover types over the study period, indicating significant transformations in the region's landscape. These changes may be influenced by factors such as population growth, urban expansion, agricultural intensification, and environmental degradation, which have collectively altered the natural and built environment of the tehsil. Major land cover changes have been found in this study especially with the help of RS & GIS technique. Nandurbar tehsil is developing region hence land use is changing rapidly. This study also shows future land cover patterns of study area.

Location of Study Area:


Database & Methodology:

In this research, Landsat satellite imagery of Nandurbar tehsil from the years 1999 and 2022 was employed to examine the changes in land cover types over a span of more than two decades. The satellite data underwent a series of remote sensing processes to ensure accuracy and clarity. These included image correction techniques to remove geometric and atmospheric distortions, histogram equalization to improve visual contrast, and supervised classification methods to distinguish and categorize various land cover types such as vegetation, water bodies, agricultural land, barren areas, and built-up settlements.


The entire analysis was conducted using sophisticated GIS (Geographic Information System) software tools, which facilitated precise mapping, identification, and quantification of land cover categories. Following classification, the area occupied by each land use type was calculated for both years, enabling a clear comparative assessment of how land cover has changed over time due to natural or human-induced factors.


Results: Nandubar Tehsil Land Cover (1999 & 2022):

Land cover Type	(Area in Sq. km.)	
	1999	2022
Agriculture	397.9133166	412.6221317
Water body	3.610984365	19.59301113
Natural Vegetation	69.05528649	5.020606173
Settlement	3.674996202	21.03414103
Barren Land	648.1729434	664.1303038
Total	1122.400194	1122.400194

The above table & graph presents a comparative analysis of land cover types in Nandurbar tehsil for the years 1999 and 2022, showing notable changes in land use over the 23-year period. Agricultural land has increased from 397.91 sq. km in 1999 to 412.62 sq. km in 2022, indicating a rise in farming activities, possibly due to population growth or expansion of cultivable land. Water bodies have significantly expanded from 3.61 sq. km to 19.59 sq. km, which could be attributed to the construction of reservoirs, improved water management, or seasonal changes. In contrast, natural vegetation has drastically declined from 69.05 sq. km to just 5.02 sq. km, suggesting large-scale deforestation, land clearing for agriculture or settlement, and environmental degradation. Settlements have grown markedly from 3.67 sq. km to 21.03 sq. km, reflecting urbanization and infrastructure development. Barren land has also slightly increased from 648.17 sq. km to 664.13 sq. km, indicating expansion of unproductive or degraded lands. Despite these individual changes, the total area remains constant at 1122.40 sq. km, affirming that the changes are due to conversion between different land cover types within the tehsil. This data highlights a significant transformation in the region's land use pattern, primarily driven by human activities.

Conclusion:

From the above study, it has been clearly shown that the area under agriculture and settlements has increased significantly over the years, indicating rising human activity and land development in Nandurbar tehsil. At the same time, there has been a noticeable decline in the area covered by natural vegetation. This suggests that agricultural expansion and urban growth may have occurred at the expense vegetated land. Such a shift in land use not only reflects changing economic and social demands but also raises concerns about the long-term environmental impact.

Acknowledgment

I would like to extend my sincere gratitude to the Principal of my institute, whose unwavering support and leadership provided the essential environment for undertaking this research. Furthermore, I am immensely thankful to my college friends, whose continuous encouragement, collaborative spirit, and stimulating discussions not only helped me navigate challenges but also profoundly inspired me to pursue and complete this type of research work.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References:

- 1. Alqurashi, A. F., & Kumar, L. (2014). Land Use and Land Cover Change Detection in the Saudi Arabian Desert Cities of Makkah and Al-Taif Using Satellite Data. Advances in Remote Sensing, 03(03), 106–119.
- 2. Aggarwal, S. P., Garg, V., Thakur, P. K., & Nikam, B. R. (2019). Hydrological Modelling in North Western Himalaya. In Remote Sensing of Northwest Himalayan Ecosystems (pp. 109-138). Springer, Singapore.
- 3. Adjemian, M., 2008. Medicine from the forest: The impact of deforestation on medicinal plant availability and use in the Bilili Game Management Area, Southern Zambia. PhD thesis, McGill University, Montreal
- 4. Chandel Ajitesh sing (2013) A Geographical study of Rural settlement types and factors affecting the rural settlement in Bilaspur District (H.P) The international journal of Research Analysis and Evaluation March-2013, Vol-iv, ISSN. No.0975-3486, Impact Factor-4.279 (SJIF)
- 5. Ester J and Simonett D. (1975). Fundamentals of image interpretation manual of remote sensing Am., Soc. Of Photogrametry, pp of 69 -1076.
- 6. F. T. Ulaby, R. K. Moore, and A. K. Fung, (1986), Microwave remote sensing: Active and passive., vol. III. Artech House: Dedham, MA, USA,
- 7. Goodchild M, Haining R, Wise S et al. (1992). Integrating GIS and Spatial Data Analysis: Problems and possibilities, International Jour, of GIS, Voi.6.
- 8. Hugh D. Clout (1972) "Rural Geography An introduction survey" Pergamon Oxford Geographies Jordan T.G. (1966) "On the nature of Settlement Geography", The Professional Geographer, Vol. XVIII, No.1
- 9. Lillesand T.M and Kiefer R.W {\%7). Remote sensing and Image Interpretation (second edition), John Wiley and sons
- 10. R. Navalgund, V. Jayaraman, and P.S. Roy, Remotesensing Sensing Applications -An Overview, Current Science, vol.93, no. 12, 2017.doi:jstor.org/stable/24102069.